Publications at the Institute of Earth System Sciences

Our publications

Showing results 41 - 50 out of 2626

2025


Vetere, F., Namur, O., Holtz, F., Almeev, R., Donato, P., Frondini, F., Cassetta, M., Pisello, A., & Perugini, D. (2025). Influence of volatiles (H2O and CO2) on shoshonite phase equilibria. Comptes Rendus Géoscience (Print), 356(S1), 35-52. https://doi.org/10.5802/crgeos.226
Walther, F., Barton, D. N., Schwaab, J., Kato-Huerta, J., Immerzeel, B., Adamescu, M., Andersen, E., Arámbula Coyote, M. V., Arany, I., Balzan, M., Bruggeman, A., Carvalho-Santos, C., Cazacu, C., Geneletti, D., Giuca, R., Inácio, M., Lagabrielle, E., Lange, S., Clec'h, S. L., ... Grêt-Regamey, A. (2025). Uncertainties in ecosystem services assessments and their implications for decision support: A semi-systematic literature review. Ecosystem Services, 73, Article 101714. Advance online publication. https://doi.org/10.1016/j.ecoser.2025.101714
Wang, D., Hou, T., Botcharnikov, R., Weyer, S., Haselbach, S. L., Zhang, Z., Wang, M., Horn, I., & Holtz, F. (2025). Fe-isotopic evidence for hydrothermal reworking as a mechanism to form high-grade Fe-Ti-V oxide ores in layered intrusions. Geochimica et cosmochimica acta, 388, 78-93. https://doi.org/10.1016/j.gca.2024.11.017
Wheeler, A., Heimhofer, U., & Esterle, J. S. (2025). Palynostratigraphic reassessment of the Permian Wolfang Basin (Queensland, Australia): implications for climate and timing of coal formation. Gondwana research, 139, 104-117. https://doi.org/10.1016/j.gr.2024.12.001
Xia, Y., Gao, P., Lei, W., Gao, J., Luo, Y., Peng, F., Mou, T., Zhao, Z., Zhang, K., Guggenberger, G., Zhang, H., & Zhang, Z. (Accepted/in press). Covering green manure increases rice yields via improving nitrogen cycling between soil and crops in paddy fields. Agriculture, Ecosystems and Environment, 383, Article 109517. https://doi.org/10.1016/j.agee.2025.109517
Yin, X., Wang, W., Zou, Y., Song, Z., Sardans, J., Wiesmeier, M., Guggenberger, G., Li, Q., Chen, J., & Peñuelas, J. (2025). Intertidal zonation of mangrove organic carbon fractions driven by vegetation biomass and soil nutrient levels. CATENA, 250, Article 108722. https://doi.org/10.1016/j.catena.2025.108722
Yu, X., Wang, L., Wang, Q., Zhou, G., Sun, H., Guggenberger, G., Li, Y., Yakov, K., Luo, Y., & Fu, Y. (2025). Faster soil organic carbon turnover in MAOM versus POM: straw input causes larger microbial driven soil organic carbon decomposition but higher straw accumulation in MAOM. Soil and Tillage Research, 251, Article 106549. Advance online publication. https://doi.org/10.1016/j.still.2025.106549
Zhang, C., Pu, H., Liu, J., Wang, X., Yang, W., She, Z., Wu, S., Zeng, G., Chen, L., & Holtz, F. (2025). Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate. Journal of earth science, 36(1), 364-372. https://doi.org/10.1007/s12583-024-0135-8
Zhang, X., Feng, X., Aloufi, A. S., Filimonenko, E., Zhou, J., Zamanian, K., Li, F. M., & Kuzyakov, Y. (2025). Trade-off between organic and inorganic carbon in soils under alfalfa-grass-cropland rotation. CATENA, 254, Article 108994. Advance online publication. https://doi.org/10.1016/j.catena.2025.108994

2024


Akinbodunse, S. J., Ufer, K., Dohrmann, R., & Mikutta, C. (2024). Evaluation of the Rietveld method for determining content and chemical composition of inorganic X-ray amorphous materials in soils. American mineralogist, 109(12), 2037-2051. https://doi.org/10.2138/am-2023-9240